The Puzzles and challenges of Internet Logistics

Girish Lakshman Director Global Logistics Amazon.com

Today's Talk

The Amazon.com Platform The Amazon Network Design and Model Network Optimization and Modeling Inventory Modeling and Optimization **Transportation Management Operational Excellence** Defining Success

Amazon.com Platform

Amazon.com - Our Approach 1. Invest big in a big, global market 2. Globally drive for scale, growth 3. Reap the benefits of scale *Better decisions drive higher capital efficiency 4. Repeat

Platform Expansion (1998 - 2000)

		US	5	l	JK		D	F
zShops	S	Неа	alth & Beauty					
Auction	IS	Art	& Collectibles					
Kitche	en	L	_awn & Patio	z	Shops		zSh	ops
Tools	/ HW		Video Games	Αι	ictions		Auct	tions
Electroni	ics	Toys	Software	DVD	& Video		DVD 8	Video
Books	Mus	sic	DVD & Video	Books	6 Music	:	Books	Music
Dist	ribu	tion	/ Custome	er Serv	vice /	Tec	hnol	ogy

amazon.com.

Amazon.com Platform

Growing customer base Technology Optimized distribution advantage Customer service focus E-commerce expertise Investment in intelligence Brand

Amazon.com Network Design and Model

Time

Amazon Model

Reduced Cycle Time = Reduced Inventory

Consumers' View

<u>Global Consumers:</u>

- Want quick delivery
- We're trying to drive them to want infinite selection
- Pay only for perceived value add

E-commerce challenges are a function of customer preferences

The New Fulfillment System

You order three items, and a

A computer assigns your

and a digital camera-to

one of Amazon's seven distribution centers, five

of which it opened this

year. With 3 million sq. ft.,

of the Empire State Building.

Amazon has 1.5 times the floor space

order-a book, a game

computer in Seattle takes charge

03.00

sa, ft

FROM YOUR MOUSE TO UR HOUSE

What goes on behind the scenes when vou place an order at Amazon.com

Your items are put into 3 crates on moving belts

Each item goes into a large green crate that contains many customers' orders. When full, the crates ride a series of conveyor belts that winds more than 10 miles through the plant at a constant speed of 2.9 ft, per sec. The bar code on each item is

scanned 15 times, by machines and by many of the 600 fulltime workers, all of whom get Amazon stock options.

All three items converge in a chute, and then inside a box

All of the crates arrive at a central point where bar codes are matched with order numbers to determine who gets what. Your three items end up in a 3-ft.-wide chuteone of several thousand-and are placed into a cardboard box with a new bar code that identifies your order.

Any gifts you've chosen 5 are wrapped by hand

Amazon trains an élite group of gift wrappers to "make it look like Mom's." Each worker processes 30 packages an hour (those who fail are reassigned to other jobs). For its busiest season vet, Amazon's warehouses are stocked with 4.4 million yards of ribbon and 7.8 million sq. ft. of wrapping paper-which if laid flat would more than cover Disneyland.

6 The box is packed, taped, weighed and labeled before leaving the warehouse in a truck

The McDonough plant was designed to ship as many as 200,000 pieces a day. About 60% of orders are shipped via the U.S. Postal Service; nearly everything else goes through United Parcel Service. Both have large facilities within 10 miles of the warehouse. Products that are unusually big or heavy (150 lbs. or more) require special delivery.

Your order arrives at your doorstep

Instituto Aragone's de Fomento, International Meeting on Logistics and Internet Oct 30, 2001

In suburban Atlanta.

three red lights go on

that has the products. Amazon's newest, in

McDonough, Ga., opened in October and

lights show which products are ordered.

button that resets the light. Computers

determine which workers go where.

2

New Castle, Del.

Campbellsville, Ky

McDonough, Ga.

770,000 0

800.000

202.000

Network Optimization and Modeling

Network Optimization System -Methodology and Structure

Minimize

- Outbound shipping cost
- Labor costs

Key Constraints

- Satisfy customer demand
- Outbound shipping/processing capacity
- Labor capacity (minimum and maximum)
- Storage capacity
- DC processing capabilities
- Inventory, long zone, and splits targets

Objectives

Design network .

- Define number and location of Fulfillment Centers (FC)
- Define velocity categories by product line
- Allocate product categories to FC's

in order to minimize

- Transportation Costs
- Capital Expenditures
- Operating Expenses
- and maximize
 - The probability of a successful ramp to Holiday volumes

Intelligently model and optimize FC network for Inbound/outbound processing and transportation costs

Model Magnitude and Input Data

Data

- Shipping rate, Zone tables by FC
- Inventory Targets from Retail/SC
- Demand Forecast by product by month
- Demand Distribution
 - product by zip3 and velocity by month
- Product Data
 - sort type, velocity, avg. cube, avg. weight, receive type, units per pack, units per tote, gift wrap, vendor compliance (assortments)
- Storage space by bin type by FC
 - Order profile
 - Units per order, product mix
 - Probabilistic splits
- Equipment capacity, labor constraint
- Productivity

Model Size

- Outbound Shipping and Injection Problem Statistics:
 - 516,888 constraints
 - 1,488,898 variables
 - 8,209,586 non-zero elements

Optimal solution found XPRESS-MP 12.13: Optimal solution found Objective 3225327.561 59262 Simplex iterations Solution:

Shipping cost for Apr-01 3.215 MM 3214938.70

amazon.com.

Solution Methodology

FC Model

•Vendor compliance (assortments, floor load, etc.)

•Avg. pack size by product line

•Units by receive type & ship type

Productivities by dc and station

•Fully burdened wage rate

•FC layout

•Problem solving

•Special processing requirements

•Avg. pack units per tote

FC Model

Inbound (Dock · Prime)

Outbound (Prime - Shipping) •FC operating expenses by product line & path

Capacity constraints

Storage Model

Optimal storage profile by FC
Storage capacity utilization
Storage costs by product line
Offsite storage requirements

Transportation Model

- Product line shipping forecast
- Product Data
 - Sort type (% of sales)
 - Weight
 - Dimensions
- Order Data
 - Items per Order
 - % Single Item Orders
- Zone Charts by FC
- Carrier Rate Tables
- DBMC distances and locations
 - Zips reached by DBMC
- Locations and processing costs for DDU sortation providers
- FC outbound capacity constraints
 - Integrated with outbound model

- Outbound shipping
 Units by FC, product, sort type, and velocity
- Transportation cost
 - Projected shipments
 - Volumes from DC to Zip
 - Projected volume by carrier

Line haul volumes for injection

Probabilistic Splits Model

- Order profile
- FC structure
- Product velocity group aggregation
- In-stock percents by DC and networkwide

- Split order percentages
 By order size
 - Aggregate
- Split shipment percentages
 - By order size
 - Aggregate

- "What if‰scenarios
 - FC structure
 - Changes to in-stock %

Inventory Modeling and Optimization

Inventory Drivers

Product groups Transportation **Product sizes** Customer **Product mixes** Experience **Splits Product compliance** Catenation Order attributes \cap Vendor lead times Network Inventory Seasonality

Instituto Aragone's de Fomento International Meeting on Logistics and Internet Oct 30, 2001

Demand

Split Shipments

An order that generates multiple shipments but only a single ship revenue

Economic Drivers

	PONENT	KEY COST DRIVERS		
Transportation	Split Shipments	FC in-stock percents		
	Long Zone Shipments	Inventory and in-stock balance between east and west coasts		
Inventory Holding	Cost	Weeks of Cover		
Margin		Distributor versus Direct		

Establish inventory policy based on economic drivers and control parameters for Fast, Medium, and Slow inventory

Fast BMVD Recommendations

Economic Analysis (\$MM)

	Inventory Investment	Inventory Holding Cost	Splits Savings	Long Zones Savings	Margin Savings	Total Savings
Books	5.17	(1.71)	1.90	2.74	2.21	5.14
Music	0.93	(0.31)	0.20	0.47	0.18	0.54
Video	0.51	(0.17)	0.09	0.21	0.22	0.35
DVD	0.46	(0.15)	0.10	0.13	0.22	0.30
BMVD - overall	7.07	(2.34)	2.29	3.55	2.83	6.33

Splits and Long Zones

Splits - 2001 Vs 2000

Long Zones - 2001 Vs 2000

<u>Splits</u> Driven by DC in-stock

Long Zones Driven by balance of inventory and in-stock between east and west coast

Comparison of Network Structure BMVD

Splits reduced by 1 percentage point by changing network structure

What is causing higher long zones?

Imbalance between east/west coast in-stocks

	Fast	Medium	Total
West (RNO)	69.7%	33.0%	57.5%
East (LEX,SDF,PHL)	89.8%	58.7%	79.4%

27.8 1.2 57.5% RNO In-stock Shipped from east to west 16.0 11.8 Shipped from RNO to west

west

29.6

east

70.4

FC Shipping targets/caps

RNOÎs daily ship units = 27

Shipped from west to east $= 27 \cdot 16.0 = 11.0$ Shipped from east to west = 11.8 + 1.2 = 13.0Total Long Zones = 24.0

Planning & Future Goals

Reduce splits and long zones

- Set optimal in-stock targets by FC
- Plan product to FC allocation
- Long range planning
 - Support implementation of plan and development of S&OP
 - Model FC network throughput and storage capacity
 - Integrate inventory planning, allocation, and splits and LZ models

Model and optimize network for 'Postal Injection'

- Optimize network for other initiatives
 - Drop Ship, POP, Pricing, Promotions, etc.
 - New inventory planning and fulfillment systems

Transportation Management

Transportation Management System

TMS process

Outbound Transportation

Carrier Negotiations Global Leverage Consolidation Innovation Backhauling Intelligent Systems

Operational Excellence

3. Operational Excellence

Distribution Transportation Inventory Technology Vendor Management **Customer Service**

Process Improvement Tools

Decision Support Tools

Leadership

Continuous Improvement in Customer Experience and the Cost to Deliver It

So...Some of The Same Tools and Systems Will Drive Value

- Total Quality Management = Teaming and Empowerment
 - Incredibly valuable given the importance of training/informing seasonal labor
 - A well-understood system always beats the best math
 - Execution is all about leadership
 - Lean = Cycle Time Reduction
 - Lower Inventory
 - Better forecasts

TQM and Lean Support Six Sigma

Six Sigma = Systematic Reduction of Variation

Less inventory

- Higher throughput
 - Lower cost
- Higher predictability
- More nimble

We have definable processes, automatic data capture, and lots of opportunities for defects

Don't have to worry much about underlying physics or chemistry!

Defining Success

- Double or triple throughput with no additional infrastructure
- Reporting much higher than 99% shipped before Xmas
- Reduction in defects to customer
- Network goals:
 - Increase shipping margins by reducing split & long zone shipments
 - Optimize traffic & consolidate/sort for minimum cost
 - Reduce lead time to customer (& working capital) with better tracking

Remember

 The woods are lovely dark and deep I have promises to keep And miles to go before I sleep And miles to go before I sleep

